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Systems Immune Monitoring & Tailoring Workflows



Samples Over Time
Reveal Immune System Dynamics

Comparisons with Earth Mover’s Distance,
Root Mean Square Deviation (RMSD),
and Change in MEM label (AMEM)



Clinical Trial Monitoring: What Do We Need to Know?
Automate Four Key Readouts vs. Clinical Outcomes

Features of Dynamic Populations
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Greenplate et al., Cancer Immunology Research 2019



Distinct Phenotypes of PD-1" CD8* T cells in Melanoma Tumors
Revealed by Quantitatively Comparing MEM Text Labels

Similarity in MEM label values for PD-1+ CD4 or CD8 T cells, B cells (REF: iPSC stem cells)
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Greenplate et al., Cancer Immunology Research 2019
Data files: http://flowrepository.org/id/FR-FCM-ZYCC Methods: Diggins et al., Nature Methods 2017; Curr Prot Cyt 2018



RAPID & T-REX Are Both Unsupervised,
RAPID: Continuous Outcomes vs. T-REX: Categorical Groups

Sample individual over time Track blood cell types T-REX algorithm: reveal responding cells
M'”'°”S °f eale negative KNN + UMAP to find cells from
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T-REX (Tracking Responders EXpanding) identifies phenotypic hotspots
undergoing great change between conditions (e.g., +/- infection)

Code: https://github.com/cytolab/t-rex
Manuscript: https://elifesciences.org/articles/64653

T-REX: Barone, Paul, Muehling et al., eLife 2021 | SARS-CoV-2 vaccine response: Kramer, Wilfong, Voss et al., bioRxiv 2021
No disclosures / conflicts, will show immune cell data from individuals receiving BNT162b2 SARS-CoV-2 vaccine 3\



Running the Workflow on PBMC

Dots = 50,000 cells
t-SNE = 25 measured protein features (25D)

|dentification of 7 canonical cell types (cpa+ T cells, cos+ T cells, NK cells,
Monocytes, Dendritic Cells, IgM+ B cells, IgM- B cells)

Healthy Peripheral Blood Mononuclear Cells
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Diggins et al., Nature Methods 2017



Let's Analyze PBMC Data!

https://cytolab.shinyapps.io/PBMC/

This web app is running R code live.

PBMC web app by Mayeda, Barone, and Irish
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/

Data Science Tutorial on Human Blood Cells

Welcome to a data science tutorial on healthy human peripheral blood mononuclear cells (PBMCs). Here you will
apply t-SNE, FlowSOM, and MEM algorithms on the data, and learn how changing different settings impacts your

results.

The dataset is from Diggins et al._Mature Methods 2017, and contains around 50,000 cells each measured for 25

different proteins. Viewing the first few cells in spreadsheet form, the data looks like the following:
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For this tutorial, we've taken a random sample of 5,000 cells from the 50,000 to run analyses on. If you'd like a
larger or smaller sample size, you have the option to change that in the following menu. Alternatively if you'd like to

reset your session, you can use the clear session button.

SAMPLE SIZE

5000

APPLY

CLEAR SESSION

PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/
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1) Build a map with t-SNE

In the first exercise we select protein features and use the t-SNE algorithm to build a map of cell phenotypes. t-SNE or t-distributed
stochastic neighbor embedding, looks at all the cell features and over several iterations embeds cells with similar expression
pattemns close to each other. The result is a 2 dimensional map of pheneotypic similarity, simplified from 25 dimensions.

With the default settings we see the 50,000 cells arranged in major islands corresponding to phenactypically distinct immune cell
types, namely CD4 T cells, CD8 T cells, B cells, NK cells, and monocytes.
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PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/
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2) Cluster cells with FlowSOM

At this point we need a tool to automatically group similar cells into clusters. To do this we'll use
P FlowSOM to generate clusters, then map those clusters in color back on the t-SNE map.
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PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/

3) Describe clusters with MEM

Once we've grouped cells into clusters, how can we identify what kind of cells are in each cluster? You can
look up marker expression values in the “spreadsheet” view of the data, or run an algorithm like MENM which
calculates features that are enriched within the various groupings. A MEM label often provides enough
infarmation to infer identity if it is 2 known cell type, or guess at its biological significance. A methods paper
explaining the MEM algorithm and going through examples is available in Current Protocols in Cytometry
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Here MEM outputs a heatmap of the relative expression of each protein organized by cluster.

MEM Heatmap
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PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/

Number of cells: 5000

You can also explore a particular cluster by clicking on it in
the plot to the left, and reading the MEM label that's
generated below.

Cluster: 4 8 % of sample

A CD16 *°CD11b * CcD11¢c *'
CD38 "1 CD56 *

v CD4 -5 CD3 4 CD44 -3 CD8 -
CD45 -1

PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/

Number of cells: 5000 You can also explore a particular cluster by clicking on it in
the plot to the left, and reading the MCM label that's

generated below.

Cluster: 11 8 % of sample

A HLA-DR *7 CD19 " 1gM ** CD20 **
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¥ CD4 ®CD3 “ CD8 ' CD44 -’

PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/

SEED

PERPLEXITY

CHANNELS

cD19
co117
CD11b
CD4
cD8
cD20
CD34
CD61
cD123
CD45RA
CD45
cD10
CD33
cD11c
cD14
CD69
CD15
CD16
CD44
CD38
CD25
cD3
IgM
HLA-DR
CDS56

(<< B <M< BRI B B< <

1) Build a map with t-SNE

In the first exercise we select protein features and use the t-SNE algorithm to build a map of cell phenotypes. t-SNE or t-distributed
stochastic neighbor embedding, looks at all the cell features and over several iterations embeds cells with similar expression
pattemns close to each other. The result is a 2 dimensional map of pheneotypic similarity, simplified from 25 dimensions.

With the default settings we see the 50,000 cells arranged in major islands corresponding to phenactypically distinct immune cell
types, namely CD4 T cells, CD8 T cells, B cells, NK cells, and monocytes.
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PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/

1) Build a map with t-SNE

SEED In the first exercise we select protein features and use the t-SNE algorithm to build a map of cell phenotypes. t-SNE or t-distributed
stochastic neighbor embedding, looks at all the cell features and over several iterations embeds cells with similar expression
84 patterns close to each other. The result is a 2 dimensional map of phenotypic similarity, simplified from 25 dimensions.

With the default settings we see the 50,000 cells arranged in major islands correspending to phenotypically distinct immune cell
types, namely CD4 T cells, CD8 T cells, B cells, NK cells, and monocytes
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based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/
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2) Cluster cells with FlowSOM

At this point we need a tool to automatically group similar cells into clusters. To do this we'll use
FlowSOM to generate clusters, then map those clusters in color back on the t-SNE map.
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PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/

2) Cluster cells with FlowSOM

43

UMBER OF CLUSTERS At this point we need a tool to automatically group similar cells into clusters. To do this we'll use
. % FlowSOM to generate clusters, then map those clusters in color back on the t-SNE map.
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https://cytolab.shinyapps.io/PBMC/

Number of cells: 5000 You can also explore a particular cluster by clicking on
it in the plot to the left, and reading the MEM label
that's generated below

Cluster: 7 14 % of sample
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PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/

Number of cells: 5000 You can also explore a particular cluster by clicking on
it in the plot to the left, and reading the MEM label
that's generated below

-

Cluster: 6 8 % of sample
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PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/
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2) Cluster cells with FlowSOM

At this point we need a tool to automatically group similar cells into clusters. To do this we'll use
P FlowSOM to generate clusters, then map those clusters in color back on the t-SNE map.
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based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/PBMC/
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2) Cluster cells with FlowSOM

At this point we need a tool to automatically group similar cells into clusters. To do this we'll use
FlowSOM to generate clusters, then map those clusters in color back on the t-SNE map.
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PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



T-REX: Compare Two Samples to Identify Things Enriched in
Either One; e.qg., Reveal Rare, Virus-Specific Immune Cells

Sample individual over time Track blood cell types T-REX algorithm: reveal responding cells
Millions 9{ cells negative  KNN + UMAP to find cells from
S o 2“‘ -.. e oshs%se regions of significant change
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Cytometry deep profiling positive ¢ <) 295% KNN neighbors
ool o from positive time
B + B ':'o::: .':.'::'::' in pooled analysis,
| _Compc?re: e .::';g. '-'-.'."- Identify cell types & biomarkers (MEM),
\L negative and positive, "'7" test antigen specificity (tetramers),
pre- and post-treatment compare change direction & magnitude

New algorithm: T-REX (Tracking Responders EXpanding)

Code: https://github.com/cytolab/t-rex
Manuscript:  https://elifesciences.org/articles/64653

T-REX: Barone, Paul, Muehling et al., eLife 2021 | SARS-CoV-2 vaccine response: Kramer, Wilfong, Voss et al., bioRxiv 2021
No disclosures / conflicts, will show immune cell data from individuals receiving BNT162b2 SARS-CoV-2 vaccine 3\


https://github.com/cytolab/t-rex
https://elifesciences.org/articles/64653

Data Science Workflow Using T-REX

Revealing very rare cells or cells Characterizing cells expanding

changing significantly or qontractlng
Dimensionality reduction Learn cell identity
*  t-SNE or UMAP * MEM
Clustering
* KNN on all cells
 DBSCAN on cells in regions changing
significantly Meian expression 0 134 (ogiike arcsnhsa

T cells, N = 10 donors, T cell subsets
T-REX Day 0 vs. Day 28 (N = 10 donors)

1CD38+ ICOS- CD8 Naive

2 CD38++ ICOS+ CD8 Naive
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P> 6 CD38++ ICOS++ CD4 Memory
Th1 CD4 T cells

Th2 CD4 T cells
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CD4 Naive T cells

285% d 0 CD8 Naive T cells

CD4 Memory T cells
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Biaxial
gating
CD8 Memory T cells

In both DP CD4+ CD8* T cells
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. 2850/() d28 TCRYO T cells
@® =95%d28

t-SNE2_T cells

|— t-SNE1_T cells

T-REX: Barone, Paul, Muehling et al., eLife 2021 | SARS-CoV-2 vaccine response: Kramer, Wilfong, Voss et al., bioRxiv 2021



Key Ideas & Findings in Today’s Talk

Sample individual over time

Infection
course

|

pre- and post-treatment

Track blood cell types T-REX algorithm: reveal responding cells

Millions ‘:”{ cells negative  KNN + UMAP to find cells from
2 jﬁ e oStes%se  regions of significant change
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= + = -:-.{: ::..:::::‘ Jy in pooled analysis,
Compare: PO .._.. e

** |dentify cell types & biomarkers (MEM),
test antigen specificity (tetramers),
compare change direction & magnitude

negative and positive,

Idea 1: T-REX automatically reveals virus-specific T cells in rhinovirus & SARS-CoV-2 vaccine response

Idea 2:

Finding:

Finding:

(without the need for tetramers, sorting, or sequencing)

Approach focuses on extreme change & can summarize disease, therapy, or perturbation response
(direction & magnitude of change; rhinovirus, COVID-19, cancer therapy, compound screening)

Mass cytometry + T-REX characterized SARS-CoV-2 vaccine-induced memory CD4 and CD8 T cells
(phenotype: CD38++ ICOS++ CD45R0+ PD-1+ Ki-67+ CXCR5-)

Phenotype of SARS-CoV-2 vaccine responding T cells closely matched rhinovirus-specific T cells



T-REX Algorithm Uses K-Nearest Neighbors (KNN) to
Characterize Each Cell's Immediate Phenotypic Neighborhood

UMAP 2

UMAP on Pair of

Samples KNN with k = 4 T-REX Plot
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T-REX algorithm applied to rhinovirus, COVID-19, and immunotherapy response:
Barone, Paul, Muehling et al., eLife 2021



T-REX: Tracking Responders EXpanding,
Every Cell Is Characterized in a Search for Hotspots of Change

Live CD4+ T cells . L .
~_— MHCII tetramers marking rhinovirus specific CD4 T cells

T-REX on / were not used to make the UMAP, instead used to show:
1 UMAP Change hotspots were enriched for virus-specific T cells
: & \I
L] e
’s Color: cells in that phenotypic neighborhood
Y/ are mostly from one sample

Dark red = cells mostly from day 7 (expanding) }

RV-NOO1

@® >95% fromd0 @ >95% from d7
>75% from dO

@ >5% of neighbors tetramer+

CDA4 T cells, Day 0 vs. Day 7,
individual infected with rhinovirus (RV-N0O1)

no cell enrichment, Aurora data, ~3 x 10° cells
T-REX: Barone, Paul, Muehling et al., eLife 2021



In Analysis of a Rhinovirus Challenge Cohort,
T-REX Revealed Virus-Specific Cell Phenotypes

ject 7 0

UMAP2_RVSub

@®:295% fromday 0 © >85% from day O @ 295% from day 7 () Tetramer+ hotspot
Uninfected 4 Uninfected \ 4 Infected
-, ] ] () CD4 T cells, Day 0 vs. Day 7,
_ ] individuals infected with rhinovirus
. 100 no cell enrichment, Cytek Aurora data
i . 1 (W)
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] ]l 48 Y
] . 1D The phenotype of rhinovirus-specific memory
i > 1N CD4+ T cells calculated by MEM:
1 . CCR5+ ICOS+ CD38+ PD-1+ CXCR5-
RV-N004 | | RV-N0O5 | | RV-NQOQ6
Infected 1 Infeeted ) - Infected Gating based on this MEM phenotype =>
1 1 ¥ enriched for tetramer+ cells
] ’ ] (without gating on tetramers):
] _ ] Indicated we could sort cells (FACS)
1 . based on T-REX MEM labels
RV-N007| ] RV-NO008 | ] RV-N009

UMAP1_RVSubject_7_0 T-REX: Barone, Paul, Muehling et al., eLife 2021



T-REX revealed virus-specific T cells without tetramers

Would this approach work with other clustering algorithms?
Is it ‘'OK’ to do KNN on UMAP axes as parameters?
(Perhaps: all embeddings are wrong, but some are useful...)

T-REX: Barone, Paul, Muehling et al., eLife 2021



T-REX Worked with Other Algorithms to Identify Comparable Cells,
But KNN on UMAP or t-SNE Outperformed KNN on Original Features

Methods that identified at least one >85% change cluster (T-REX hotspot of change)
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T-REX: Barone, Paul, Muehling et al., eLife 2021



T-REX revealed virus-specific T cells without tetramers

Also found to work for:

- arange of k-values (k = 60 was optimal)

- post-infection as the comparison point to day 7

- data from a range of cytometers, studies, and labs

- COVID-19, melanoma immunotherapy response, AML

(see the manuscript for this & more!) }\

T-REX: Barone, Paul, Muehling et al., eLife 2021



Massive Immune Change, Common Shifts in Expanding Cell
Subsets Observed Between Day 0 and Day 7 in COVID-19
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COV-994536 Day 0 vs. 7
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T-REX (eLife 2020) analysis of data from Mathew, Giles, Baxter, Oldridge, Greenplate, Wu, Alanio et al., Science 2020 (Wherry, Symphony)

® 295%d0
285% d0
In both

® 285%d7

® =295%d7

Naive



Half of COVID-19 Patients Displayed Immune Changes Comparable to AML
Patients with a Complete Response to Chemotherapy
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T-REX revealed virus-specific T cells without tetramers
& characterized massive immune changes in COVID-19

Would it also work to characterize SARS-CoV-2 vaccine response? »

T-REX: Barone, Paul, Muehling et al., eLife 2021



T-REX Reveals Memory CD4 & CD8 T Cell Phenotypes
Expanding following BNT162b2 SARS-CoV-2 RNA Vaccine
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Vaccine response: Kramer, Wilfong, Voss et al., bioRxiv 2021
T-REX: Barone, Paul, Muehling et al., eLife 2021



Mass Cytometry Phenotyping of ICOS+ CD38+ PD-1+ Ki-67+ CXCR5-
Memory CD4 & CD8 T Cells following SARS-CoV-2 Vaccination

T cell mass cytometry panel on merged post-vaccine data (Day 28, N = 10)

t-SNE2 T cells

CCR4 |1

~ t-SNE1 T cells

Vaccine response: Kramer, Wilfong, Voss et al., bioRxiv 2021
T-REX: Barone, Paul, Muehling et al., eLife 2021



Mass Cytometry Phenotyping of ICOS+ CD38+ PD-1+ CXCR5-
Memory CD4 & CD8 T Cells following SARS-CoV-2 Vaccination
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Vaccine response: Kramer, Wilfong, Voss et al., bioRxiv 2021
T-REX: Barone, Paul, Muehling et al., eLife 2021



Sorting T cells on T-REX MEM Phenotype (ICOS*™ CD38*)
Confirms Specific SARS-CoV-2 Spike Peptide Reactivity

Sorted CD4 T cells: IFN<y
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the cells from T-REX were CXCR5-
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Vaccine response: Kramer, Wilfong, Voss et al., bioRxiv 2021
T-REX: Barone, Paul, Muehling et al., eLife 2021



T-REX revealed virus-specific T cells without tetramers,
characterized massive immune changes in COVID-19,
& identified a SARS-CoV-2 reactive non-canonical
memory T cell that expands by day 28 following RNA vaccination

Check out the pre-print for more, including plasmablasts, B cell LIBRA-seq,
and a breakthrough case who did NOT generate the ICOS+ CD38+ T cells.

Vaccine response: Kramer, Wilfong, Voss et al., bioRxiv 2021
T-REX: Barone, Paul, Muehling et al., eLife 2021



Let's Analyze Using T-REX!

https://cytolab.shinyapps.io/ TREX/

This web app is running R code live.

TREX web app by Mayeda, Barone, and Irish
based on Barone, Paul, Muehling et al., eLife 2021



https://cytolab.shinyapps.io/TREX/
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https://cytolab.shinyapps.io/TREX/

2) Cluster with DBSCAN, and examine MEM labels
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based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/TREX/

2) Cluster with DBSCAN, and examine MEM labels
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PBMC web app by Mayeda et al.
based on Diggins et al., Nature Methods 2017



https://cytolab.shinyapps.io/TREX/
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https://cytolab.shinyapps.io/TREX/
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https://cytolab.shinyapps.io/TREX/
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1) Identify populations of expansion and contraction with T-REX
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Irish lab website:

Irish Lab @ Vanderbilt University

Single cell biology for precision medicine
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Introduction to Data Science and
Computational Tools



Goal: Systematically Dissect Cellular Mechanisms
Across Time, Treatments, Tissues, & Tumor Types

Collaborative
clinical research
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Lung Cancer
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Irish & Diggins



Imagine Finding Pieces of a Jigsaw Puzzle...

Flow Cytometry

Manual review

Setup (scaling, single cell gating,

compensation, batch correction)

t-SNE, UMAP, PCA
(simplify the problem by
organizing the data)

Organization

FlowSOM, SPADE, gating

Grouping (split cells into cell types
like T cells or monocytes)

Heatmaps, MEM, RMSD

Interpretation (analyze group features,

learn cell identities)

Puzzle

Manual review
(make sure all the pieces

are from the same puzzle)

Group pieces
(find corners, edges,
pieces with distinct colors)

Assemble parts
(connect similar pieces,
create distinct shapes)

Interpret picture
(see both the pieces
and the whole picture)



Effective data analysis is critical in clinical research,
& this now means working with computational tools
that reveal and model patterns across data types

Tools from one area can be applied in others
(economics, math, patients, cells, pixels, ...)

Data science workshop can be self-taught:

https://qithub.com/cytolab/




Unsupervised Analysis: Not Using Prior Knowledge

To Guide the Analysis

Prior knowledge examples: Stem cells express CD34,
these samples were from patients that responded to drug

Supervised Approaches Unsupervised Approaches
* Expert gating * Most heatmap clustering
« Citrus - SPADE, FlowSOM

* CellCNN (neural network) « t-SNE / viSNE, UMAP

* Wanderlust * Phenograph

CD45-154

10? 10
CD3-170

See Table 1 of Diggins et al., Methods 2015 for list of unsupervised tools



Flow Cytometry Workflow from Data Collection to

Deep Analysis

Data collection
1) Panel design
2) Data collection

Stimulate Identity Stain Phospho-stain  Collect Data

Data processing
3) Normalization
4) Concatenation
5) Scale transformation

Cofactor = 5 Cofactor = 10

142Ce_CD19

........

‘‘‘‘‘‘‘

w? W 10 w
170Yb_CD3 170Yb_CD3

Distinguishing
initial populations
6) Live single cell gating
7) Focal population gating

40.98%
o 3 .

89Y_CD45

I
.....

Revealing

cell subsets
8) Feature selection
9) Dimensionality
reduction
10) Identify cell clusters

% e
g .o—@& “0
* i, e

UUUUUUUUUU

w?
Offset

Characterizing

cell subsets
11) Feature comparison
12) Model populations
13) Learn cell identity
14) Statistical testing

|
e
u
u
H
@

How much can
be automated?

How do we
select tools and
use them well?

Workflow Steps Adapted from Diggins et al., Methods 2015




Key Analysis Concepts: Dimensionality Reduction, Transformation,
Clustering, Modeling, Visualization, & Integration

A PBMC, AML Patient, Day O (pre-treatment) B
i VISNE Populations gated CD8* T cells

Non-blasts,
AML blood CD4+

AR T cells
140 = X
] Intact

single cells

NKs
B cells

AML blasts

Event length

Population
interpretations

" VISNE

Amir et al.
Intercalator .
~ Nature biotech 2013
CD45 cD3
A - Non-blasts, Healthy
@000
Cell
number
i SPADE
RIeI::vwe @ R K . Qlu et al.
(bld . S Nature biotech 2011

* 50 <
@759 (3
Cell
number

= Hiah

Diggins et al., Methods 2015



VISNE / t-SNE Arranges Cells in 2D by Multi-D Similarity

Monocytes

CD8 T cells

CDA4 T cells

NK cells

Healthy human blood, mass cytometry,
26 markers measured, ViSNE analysis tool

Animation created by Cytobank team from iterations of viSNE / t-SNE using PBMC (26 features)



VISNE / t-SNE Arranges Cells in 2D by Multi-D Similarity

Healthy human blood, mass cytometry,
26 markers measured, ViSNE analysis tool

Animation created by Cytobank team from iterations of viSNE / t-SNE using PBMC (26 features)



VISNE / t-SNE Arranges Cells in 2D by Multi-D Similarity

Monocytes

CD8 T cells

CDA4 T cells

NK cells

Healthy human blood, mass cytometry,
26 markers measured, ViSNE analysis tool

Animation created by Cytobank team from iterations of viSNE / t-SNE using PBMC (26 features)



t-SNE Analysis Allows 2D Visualization of High
Dimensional Single Cell Data

Same map, different information

/ .HH\\
rd kY
;
g

A

v Healthy Peripheral Blood Mononuclear Cells

Cell Density CD3 CD19

New 2D axes that represent
phenotypic similarities of singles cells —— 1dot =1 cell _—



t-SNE 2D Examples with Animations and Settings

http://distill.pub/2016/misread-tsne

Step A square grid with equal
53 spacing between points.
Try convergence at

Points Per Side 20 different sizes.

Step A square grid with equal
280 spacing between points.

Try convergence at

Points Per Side 20 differerit’sizes.
] GD Share this vie ]
Perplexity 10 Perplexity 10
@ [ ]
Epsilon 5 Epsilon 5
. . - . [ o
-e * . . . . L4 - .
%, e %28
Rt 0w Wy B
A TUNE N A
MARTIN WATTENBERG ~ FERNANDA VIEGAS  IAN JOHNSON Oct Citation: MARTIN WATTENBERG ~ FERNANDA VIEGAS  IAN JOHNSON Oct. 13 Citation,
Google Brain Google Brain Google Cloud 2016 Wattenberg, et al., 2016 Google Brain Google Brain Google Cloud 2016 Wattenberg, et al., 2016



Clustering with FlowSOM: Self-organizing Maps

\ Sample_1 .fz:sJ J Sample_s.ft:aj
* Read the fcs-files / |
L Compensate and transform | = 711 —) o i iz7 )
Read Input * Concatenate and scale the data Cell 1 ] ——
. Cell 2 i
;;ell n :|' Sl;mpie s
y’4
¢ Train a self organizing map
e Get an overview of the data
* Optionally, compare with
Build SOM manual gating =
¢ Connect the nodes of the SOM in
a minimal spanning tree
* Result comparable to SPADE
J
1
* Consensus clustering of
the SOM nodes
Meta -
clustering J

Van Gassen et al., Cytometry A 2015
See also, FlowSOM does well in a comparison of clustering tools: Weber & Robinson, Cytometry A 2017



Clustering with FlowSOM: Self-organizing Maps

¢ Read the fcs-files
* Compensate and transform
Read Input * Concatenate and scale the data

A SOM is created by
assigning data points/cells to

* Train a self organizing map h nodes based on their

* Getan overview of the data -—) multidimensional phenotypes,
updating this map repeatedly
until each cell is assigned to a

node with the most similar
¢ Connect the nodes of the SOM in cells
a minimal spanning tree

* Optionally, compare with
manual gating

‘Build SOM

* Result comparable to SPADE

* Consensus clustering of
Meta - the SOM nodes

clustering y

Van Gassen et al., Cytometry A 2015
See also, FlowSOM does well in a comparison of clustering tools: Weber & Robinson, Cytometry A 2017



Clustering with FlowSOM: Self-organizing Maps

Read Input

Build SOM

Meta -

clustering

* Read the fcs-files
* Compensate and transform
* Concatenate and scale the data

¢ Train a self organizing map
* Get an overview of the data

* Optionally, compare with
manual gating

The next step is to arrange the

J/

¢ Connect the nodes of the SOM in
a minimal spanning tree

* Result comparable to SPADE

N\

nodes along a minimal
spanning tree (MST), so that
nodes that are most similar are
closest on the tree

*not used in our visualization*

J

* Consensus clustering of
the SOM nodes

04 % b
O j-..ﬂ
© o

Van Gassen et al., Cytometry A 2015

See also, FlowSOM does well in a comparison of clustering tools: Weber & Robinson, Cytometry A 2017



Clustering with FlowSOM: Self-organizing Maps

* Read the fcs-files
* Compensate and transform
Read Input * Concatenate and scale the data

¢ Train a self organizing map
* Get an overview of the data

¢ Optionally, compare with
manual gating

Build SOM

/

\
* Connect the nodes of the SOM in

a minimal spanning tree
* Result comparable to SPADE

Finally, similar nodes are
J combined based on the number
of desired clusters defined by

& the user. This desired nhumber
* Consensus clustering of ‘ can be based on prior
Met the SOM nodes .
s knowledge or a specific goal
clustering J

(i.e. minimizing intracluster
variance)

Van Gassen et al., Cytometry A 2015
See also, FlowSOM does well in a comparison of clustering tools: Weber & Robinson, Cytometry A 2017



Spanning-Tree Progression Analysis of Density-Normalized
Events (SPADE) is an Alternative Clustering Tool

(i) Cytometry data

Density-dependent
down-sampling

(ii) Down-sampled data

Agglomerative
clustering

(iii) Clustering result

Minimum spanning
tree construction

(iv) SPADE tree

Up-sampling

(v) Colored tree showing
cellular heterogeneity

—
—

Marker 2

(i)

E =u
Low High

Intensity

Qui et al., Nature Biotechnology 2011



FlowSOM Clusters are Dependent on Input Parameters

Major Populations Overlaid on t-SNE Axes FlowSOM on t-SNE Axes (n = 10) FlowSOM on Original Markers (n = 10)

|

Dendritic cells

. ¥

IgM- B cells

IgM+ B cells

20

B0

mx

5895

096 T L e e RSN A p s e — — . 097

Diggins et al., Nature Methods 2017




FlowSOM Requires that Users Choose a Number of

Clusters

t-SMNE 2

20

-20 1

5 Clusters

-2IU 0
+-SNE 1

201

-201

20

35 Clusters

15 Clusters

201

-20

4R

20

25 Clusters

204

-201

, ,L,.

oy
h ...-.
- N ;
. i 1
. LY.,

201

201

20

20

Data from Diggins et al., Nature Methods, 2017




FlowSOM Clusters are Dependent on Input Parameters

5 Clusters

. ¥

204

t+-SNE 2

204

20 0
t-SNE 1

20

-20

204

-204

35 Clusters

15 Clusters

201

-20

25 Clusters

45 Clusters

Diggins et al., Nature Methods 2017



Phenograph: Clustering 35 Features => t-SNE (Not the Reverse)

PhenoGraph

A Manual Gates

® CD11b+ Monocyte
& CD11b- Monocyte
® HSPC
Pre-B 1
® Pre-BIl
® |mmature B
Mature B

® Mature CD4+ T

® Megakaryocyte

@ Erythroblast
Plasmacytoid DC

t-SNE2

t-SNE1

L
©m- D0 s W=

Levine et al., Cell 2015

Diggins: t-SNE or UMAP on Features => Clustering on 2 axes

Cluster ID

Density

a

UMAP2

v 3

Diggins et al., Methods 2015



Patient |

Cell 1
Cell 2

D

Marker 2

Cell m

(iv)

(i)

Citrus: Supervised Population Finding

Patient Status f1 f p
Healthy Patient 1
Diseased Patient 2
Diseased Patient n
(v)
s V

Regularized Regression Model

~

i)

Subset A

_ Marker ?

' Subs'et A ébund'ance'

Markér 1

Automated identification of stratifying signatures in
cellular subpopulations

Robert V. Bruggner™®, Bernd Bodenmiller, David L. Dill%, Robert J. Tibshirani®*', and Garry P. Nolan®’

2Biomedical Informatics Training Program, Stanford University Medical School, Stanford, CA 94305; ®Baxter Laboratory for Stem Cell Biology, Department of
Microbiology and Immunology, and Departments of “Computer Science, *Health Research and Policy, and Statistics, Stanford University, Stanford, CA 94305;
and “Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland

Contributed by Robert J. Tibshirani, May 14, 2014 (sent for review February 12, 2014)

A

True Positive Rate (Sensitivity)

Time Dependent ROC Curves

1.00= Method
—— citrus
—— flowType
Dataset
0.75=
— test
----- train
0.50 =
0.25+ a
: i citrus/training AUC=0.69 (95% CI 0.58-0.81)
) _,_ citrus/testing AUC=0.80 (95% CI 0.70-0.92)
iy flowType/training AUC=0.65 (95% CI 0.52-0.79)
0.00 4 flowType/testing AUC=0.52 (95% CIl 0.36-0.69)
T T T T T
0.00 0.25 0.50 0.75 1.00

False Positive Rate (1-Specificity)

Bruggner et al., PNAS 2014



Citrus & RAPID Connect Cell Clusters to Clinical Outcomes,
RAPID is Designed for Unsupervised Analysis of Survival

Citrus RAPID

Bruggner, Tibshirani, et al., PNAS 2014 elLife 2020
Findin Unsupervised Unsupervised
Il el ,? (hierarchical clustering, (various: FlowSOM, KNN,
Cell ClUSters cells may be in 2+ clusters) t-SNE + FlowSOM)
Determining number Unsupervised Unsupervised

(seeks few clusters

of cell clusters to seek  (mustbe >5% of sample) w/ low internal variation)

Supervised, multivariate
Modeling (lasso regularized

cluster features logistic regression,
nearest shrunken centroid)

Unsupervised, univariate
(median or MEM, simply a
statistical description of cluster)

Supervised, happens at start  Unsupervised, happens at end
(expert knows cut points,  (cluster abundance as cut point,
assigns patients to groups) Cox model of hazard)

Splitting patients
iInto groups



Data Science Workflow using RAPID

Revealing cell subsets Characterizing cell subsets
Dimensionality reduction Learn cell identity
« t-SNE or UMAP - MEM
Clustering Statis_tical Testing
«  FlowSOM optimized - | Risk Assessment
Feature Comparison
« RMSD

a . A Feature1*s FeatureX*?
V¥ Feature2’ FeatureY-?

Survival Percentage

!

Overall Survival Time (days)

A Feature2* FeatureY*®
¥ Feature1” FeatureX?

Survival Percentage

Overall Survival Time (days)

SNE1

t-SNE2

t

RAPID: Leelatian & Sinnaeve et al., eLife 2020



RAPID Maps Clinical Outcomes Onto Clusters
(in t-SNE, UMAP, 2D image, original features, PCA, etc.)

Immunostain & Machine learning with
mass cytometry glioblastoma cells

nt1_t-SNE2

—» RAPID

: _ - . @ Glioblastoma
Patlept with IDH I_Enzyr_nafuc @ Endothelial
wild-type dissociation
glioblastoma ® APC
@ Non-APC

Risk Assessment Population IDentification (RAPID) Maps Outcome onto t-SNE

131,880 glioblastoma cells

Patient2_t-SNE2

%o
Patient2_t-SNE1

from 28 patients 43 cell clusters 9 risk stratifying cell clusters
+100 | a +100- - +100- a
] n Hazard ratio,
| death
_| p-value
— —_— <0.01
W w <0.05
(% 0 " —>% 0- <1T <0.1
- - - 20.1
N - <0.1
>1
N Cell - <0.05
' density - ll <0.01
100 e 100~
I I I I I I I I I I I I I I I I | I | | | I
-100 0 +100 -100 0 +100 100 o 4100
t-SNE2 t-SNE2 t-SNE2

Leelatian & Sinnaeve et al., eLife 2020



RAPID Revealed Phenotypically Distinct
Risk Stratifying Glioblastoma Cell Clusters

Survival Percentage

Poor survival of Glioma Negative Prognostic (GNP) high patients

Density
131,880
GBM cells
28 patients,
t-SNE

100— 100— 100 —
- % 75 §=75 - %75 .
c = c
7 & 7 g8 7 &
- & 50 & 50 & 50 |
T T s )
: Z. : " RAPID
— U=3 25 | u?) — U=3 25 |
7 B 7 7 41
I 0 I R B e 0 I B I 0 T T T ¥
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Survival Time (days) Survival Time (days) Survival Time (days) Survival Time (days)
- Low (21) p-value = 0.004 - Low (21) p-value = 0.047 - Low (20) p-value = 0.008 - Low (21) p-value = 0.017
: HR = 4. HR = 2502 = 3318 X HR = 3.028
= High (7) 95% CI [1.58,11.3] = High (7) 95% CI [1.01,6.2] = High (8) 95% CI [1.37,8.02] = High (7) 95% CI [1.22,7.51]

Survival Percentage

Hazard ratio,
death

p-value
<0.01

<0.05
<0.1
=01
<0.1
<0.05
<0.01

<1

Better survival of Glioma Positive Prognostic (GPP) high patients

02

03

04

05

41

100 1004 100 100 100—
N 5 5 - & s -
& g s 8
25| % 75| é 75| g 75— é 75—
o _ = _ = _ = —
7 & & & &
50— —= 504 @ 90+ © 90 z 507
g 2 2 2
— o [ Z 7 2 *
‘5 3 = =1
25 » 25- ® 25| n 25— 0 25—
] | — _ _
0 1 0 0
0 I e 0 T T T T R I W T T T 1 T eho T 1doo | 12
0 500 1000 1500 0 500 1000 1500 0 s00 1000 1500
0 O Ty 5% O oval Time ays) 0° Survival Time (days) Survival Time (days) Survival Time (days)
= Low (21) P—Vvalue= 0.021 = Low (21) p~—value = 0.015 = ow (20) Pp—value= 0.043 = Low (20) p~—value = 0.037 =—Low (19) p—value = 0.043

95% CI[0.11,0.83]

95% CI[0.11,0.78]

95% CI[0.16,0.97]

95% CI[0.16,0.94]

95% CI [0.16,0.97]

Leelatian & Sinnaeve et al., eLife 2020



Statistical & Biological Validation Are
Essential Parts of Algorithm & Study Design

C Cluster and Phenotypic Stability Testing

Repeated Iterative Stable, risk-stratifying
cell sampling clustering analysis All clusters with 20.5 F1 measure cell clusters
- AND signficant HR of death

S [ |

- [¥10 Phenotypic Stability

—— L =
; Observed in
O = 50% of cell —»
= |x100 subsampling
: runs

Run 2

Run 3

SNE1

t

t+-SNE2 l

Test for independence of
effect using Multivariate Cox
Proportional Hazards Model

sne1 Run 4
o

x100

t

o

Biological Validation

Feature selection for validation Low dimensional gating strategy Survival analysis
PR .
- &
- 8
A Feature1* FeatureX*? £ ¢ -
© ©
V¥ Feature2”’ FeatureY- el £
Feature 2 a
—> OR —> Overall Survival Time (‘days)
o
A Feature2+5 FeatureY+*3 Immunohistochemistry staining £
Q
7 2 ] i S
V¥ Feature1” FeatureX F S 8-
EE
- p A‘ % 1 T T T T T T
— Overall Survival Time (days)

Leelatian, Sinnaeve et al., eLife 2020



Re-Running RAPID +9X with Different Cells from the Same Tumors
Gave Similar GNP & GPP Phenotypes and Risk Stratification

_—— .
* RMggValue% E ﬁ_ [ERun 10
@c\P [l Runt E * : :
@crr [ Runn s % i l
Similarity in MEM ] =
label (using RMSD) o
for GNP_n & GPP_n g ﬁi*
§ =
Different sets of s u s
4,710 cells $ - .
from each tumor 8 ’ A
Script runs in §
15 m|n W/ t'SNE E B Run7 ,‘
o | § |
S . = -
—— -
n [l Run2 []Run3 [[]Run4 [JRun5 [ Runé

o o >,
., ’?‘ Ty b i

bioRXxiv pre-print: https://doi.org/10.1101/632208 Leelatian & Sinnaeve et al.

P




Re-Running RAPID with UMAP Instead of t-SNE

Gave Similar GNP & GPP Phenotypes and Risk Stratification

. f-measure = 0.86 t-SNE Clusters on UMAP UMAP Clusters on t-SNE
5 ® N L3
T | ®e . - | '
° |
w Z o o
Z 9O | eoe
(/7]
] T =2
: &S | e °.. ° ® o
o % & o0 L
n oo oo
14 T ) = %
N o =) b
z o L4 PY PY -
= [0} = |
5 oq =
2 GNP High GNP and GPP High % T % T T T T T 1
2 ! GPP Low allGBM_UMAP1 allGBM_t-SNE2
alGBM_UMAP RAPID on UMAP
UMAP GNP_28 UMAP GPP_1 UMAP GPP_3 UMAP GPP_27 UMAP GNP_28: UMAP GPP_27:
100} 100 100 100 P: A S100B*SOX2* P: A S100B*EGFR*GFAP*
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Leelatian & Sinnaeve et al.,

eLife 2020




A Case Study: Systems Immune Monitoring with Mass Cytometry
Reveals A Clinically Significant Rare Cell Subset

MDS in Melanoma Patient Revealed During a-PD-1 Therapy

Singlets

Healthy Donor Pre 3 weeks post 12 weeks post 6 months post

Healthy donor looks
similar to melanoma in
2D views

At Pre-Tx, MDS blasts
were not detected
by standard CBC

CD45

High dimensional
panel allowed review
of PD-1 on MDS
blasts w/ existing data

1.10% '

cD36
Mass cytometry data (CyTOF)

Melanoma data: https://flowrepository.org/id/FR-FCM-ZYDG Greenplate et al., Cancer Immunology Research 2016



Clinical Trial Monitoring: What Do We Need to Know?
Automate Four Key Readouts vs. Clinical Outcomes

Features of Dynamic Populations

/\ Systems \/ Population . Signature ~, Population
< 2 3 @)

Plasticity abundance — features _ novelty
12.75% Pre-therapy 2 /\ <
- | AHLADR™ CCR&" CD38" {/%9 = &S
L%j CD33*" Pre Timepoint
“ Y CD8% CD45R0O° CD3™®
= CD44CD452 CCR4™
~CCR7'CD28"'"CD27"
Pre-T|x
| 379, Time point 1
= e AHLADR" CD38'' CD45RA""
= $f° ° .  vCD8®CD4CD3
' ‘ S Se, CD45RO™® CCR52CD45™
‘\ D %57 CD282CD20"' CCR4™"  an
' o 239 | cpz2r
o Bt
Time (1
Earth Mover’s Distance Traditional gating Marker Enrichment AMEM vs. Timepoint
K on t-SNE or UMAP/ or cluster frequency Modeling (MEM) or Cell Atlas

How we quantified
Greenplate et al., Cancer Immunology Research 2019



Plasticity / Stability: Earth Mover’s Distance Quantifies
Change Over Time Within a t-SNE Analysis

Melanoma Patients Treated with a-PD-1 Therapy, Monitored by Mass Cytometry

PBMC, live cells, common viSNE map ~ anin Movers

Melanoma Distance

patients Ere-therapyi 3 weeks 712 weeks 76months VS0 2 4 6 &
Self -
Mel

O -
Self
Mel i I ’:
o -

- Selfi I
MB-005¢ - |

o~ .
oo - - -
@ 20 " o T 2"

tSNE1

Systems immune monitoring reveals an unexpected pattern in MB-009
Individuals can be their own significantly stable baseline

!

Greenplate et al., Cancer Immunology Research 2019
Melanoma data: https://flowrepository.org/id/FR-FCM-ZYDG MB-009 Case Study from Greenplate et al., CIR 2016



Plasticity / Stability: Earth Mover’s Distance Quantifies
Change Over Time Within a t-SNE Analysis

Melanoma Patients Treated with a-PD-1 Therapy, Monitored by Mass Cytometry

Pairwise EMD for common VviSNE, PMBC, live cells

0 12 weeks
j ﬁ [ 6 months

AR | EMD value

= [ .
H_ —0 4 8 12

e M e I e 0l I Ml
Systems immune monitoring reveals an unexpected pattern in MB-009

PRS- B
AN S s
Melanoma " BMC, live cells, common viSNE map Eag:;tl\a/llr?(\:/:rs E E % I .mg'ggg
patients Pre-therapy 3 weeks 12 weeks 6 months Vo 2 4 6 8 EMB-OOB
il | clw | s Seff | I R M B B B B mwvis-007
MB-009 - & PO - : - U - @ Mel N mMB-008
. Q DUQe HD E %. E mMB-009
: : mMB-010
@i oL | self | E % ﬁ mMB-012
e | el % ‘ mHealthy
= | HD | I [
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H pre
o8 | Self | E % . W 3 weeks
v Mel — "
| HD % E

T T T T

Greenplate et al., Cancer Immunology Research 2019
Melanoma data: https://flowrepository.org/id/FR-FCM-ZYDG MB-009 Case Study from Greenplate et al., CIR 2016



Clinical Trial Monitoring: What Do We Need to Know?
Automate Four Key Readouts vs. Clinical Outcomes

Features of Dynamic Populations

Systems
Plasticity

~

Time 1

@

Earth Mover’s Distance
on t-SNE or UMAP

abundance
12.75%

o'W e
A

Traditional gating
Kor cluster frequency

Population \/3\ Signature

. Population

)
— features _ hovelty
Pre-therapy 2 /\ <
AHLADR*2 CCR5" CD38"" LLF%@M g

CD33" Pre Timepoint
¥ CD8- CD45RO-© CD3
CD4-CD452 CCR4!

| CCR7-"CD28"' CD27"

Time point 1
AHLADR*2 CD38*' CD45RA""
CD88CD4°¢CD3°¢
CD45RO™® CCR52CD45™
CD282 CD20" CCR4™"
| CD271

AMEM vs. Timepoint

Marker Enrichment
or Cell Atlas

Modeling (MEM)

How we quantified

Greenplate et al., Cancer Immunology Research 2019



Clinical Trial Monitoring: What Do We Need to Know?
Automate Four Key Readouts vs. Clinical Outcomes

Features of Dynamic Populations

Systems @ Population

abundance
12.75%

Plasticity

Earth Mover’s Distance
on t-SNE or UMAP

Traditional gating

or cluster frequency

@ Signature @ Population
features novelty
Pre-therapy -
'AHLADR*™ CCR5*' CD38"" - %
Timepoint

CD33*" Pre
VY CD8% CD45R0O*® CD3®
CD4+4CD45%2 CCR4"

. CCR7-' CD28"' CD27"! %

Time point 1

/AHLADR* CD38*' CD45RA*"

Vv CD88 CD4°¢ CD3-¢
CD45R0O5 CCR52CD452
CD2872 CD20~' CCR4""

. CD27"

Marker Enrichment
Modeling (MEM)

AMEM vs. Timepoint
or Cell Atlas

How we quantified

Greenplate et al., Cancer Immunology Research 2019



Becht et al., UMAP Preserves Local and Global Structure
(Analysis of Tissue T Cells; Color = Expert Knowledge / Source)

(a) UMAP better split CD8 T cells, yo T cells, and contaminating cells

UMAP t-SNE

Cell types
® Contaminant (includingB) @ CD4T @CD8T @ MAIT @NK/ILC T

Dataset covering 35 samples originating from 8 distinct human tissues enriched for T and natural killer (NK)
cells, of more than >300,000 cell events with 39 protein targets (Wong et al. dataset).

Becht et al., Nature Biotechnology 2018



Visualization and analysis of single-cell RNA-seq data by
kernel-based similarity learning (SIMLR)

Learned Similarity

Euclidean Similarity

Pearson Correlation
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Wang et al., Nature Methods 2017



Resources

Normalization
https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.22271

Gaussian Gating

http://cytoforum.stanford.edu/download/file.php?id=242&sid=37e5ec0a3dedb53865bbbcb6a023c316

t-SNE
https://www.nature.com/articles/nbt.2594

Opt-SNE
https://www.biorxiv.org/content/10.1101/451690v3.full

UMAP
https://www.nature.com/articles/nbt.4314

FlowSOM
https://www.ncbi.nlm.nih.gov/pubmed/25573116

SPADE
https://www.nature.com/articles/nbt.1991

Phenograph
https://www.sciencedirect.com/science/article/pii/S0092867415006376

MEM
https://www.nature.com/articles/nmeth.4149

RAPID
https://elifesciences.org/articles/56879

T-REX
https://elifesciences.org/articles/64653

“A Beginner’s Guide
to Analyzing and
Visualizing Mass
Cytometry Data”
https://www.jimmunol.
org/content/200/1/3

Comparison of
clustering methods
for high-
dimensional single-
cell flow and mass
cytometry data
https://www.ncbi.nlm.
nih.gov/pubmed/2799
2111



https://www.google.com/url?q=https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.22271&sa=D&source=hangouts&ust=1576082999027000&usg=AFQjCNFjtgA0Y3NQtOLwqOf5gNg1j8sjRQ
http://cytoforum.stanford.edu/download/file.php?id=242&sid=37e5ec0a3dedb53865bbbcb6a023c316
https://www.nature.com/articles/nbt.2594
https://www.biorxiv.org/content/10.1101/451690v3.full
https://www.nature.com/articles/nbt.4314
https://www.ncbi.nlm.nih.gov/pubmed/25573116
https://www.nature.com/articles/nbt.1991
https://www.sciencedirect.com/science/article/pii/S0092867415006376
https://www.nature.com/articles/nmeth.4149
https://elifesciences.org/articles/56879
https://elifesciences.org/articles/64653
https://www.ncbi.nlm.nih.gov/pubmed/27992111
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